
1

Verifying the Correctness of HARPO Programs

Inaam Ahmed

Electrical and Computer Engineering

Memorial University of Newfoundland

Email: inaama@mun.ca

Theodore S. Norvell

Electrical and Computer Engineering

Memorial University of Newfoundland

Email: theo@mun.ca

R. Venkatesan

Electrical and Computer Engineering

Memorial University of Newfoundland

Email: venky@mun.ca

Abstract- This paper reports an implementation of a verifier
for HARPO, a concurrent programming language. The verifier
translates annotated programs into the intermediate verification

language Boogie; the translated program is then checked by the
Boogie verifier. The translation of HARPO programs is achieved
by parsing the source code into valid abstract syntax tree; each

node of the syntax tree is then used for generating its equivalent
Boogie code. By using our verifier, HARPO programmers can be
assured that their designs are free of defects.

Index Terms— HARPO, Boogie, Program Verification

I. INTRODUCTION

Defects in software cost money and sometimes lives. How

can we ensure that a program is correct? Testing does not

guarantee that a program is correct for every input. Testing

concurrent programs does not ensure that a program is correct

even for the example inputs. As testing of a program with any

sets of inputs can show the presence of errors, but not their

absence, testing is insufficient to ensure the system is error

free [1]. The purpose of program verification is to provide an

error-free software system. A critical system needs to be

known to be defect free with mathematical certainty prior to

being deployed. The formal program verification considers

computer programs as mathematical objects and their

properties are verified by mathematical proofs.

HARPO is an object-oriented, concurrent programming

language [2,3,4]. HARPO is intended to target a variety of

hardware platforms including microprocessors, field-

programmable gate arrays, and coarse-grained reconfigurable

architectures. The design of HARPO compiler is shown in

Figure 0. The HARPO source programs may be compiled to

the equivalent C, Boogie, or VHDL.

In this paper, we report the initial design of the verifier

implementation which is able to compile HARPO programs

into equivalent Boogie programs. The HARPO verifier works

by translating HARPO programs to code in the Boogie

intermediate verification language [5,7]. The Boogie

verification uses a theorem prover, Satisfiability Modulo

Theories (SMT) solver Z3 to detect the errors in source code.

This verification methodology for program verification based

on theorem provers guarantees the accuracy of programs

100% [6].

Numerous verification tools have been designed to verify

sequential and concurrent programs in past few years based on

Boogie, including Dafny, Chalice, VCC, Eiffel, and Spec#

[5,10].

Figure 0: HARPO Compiler translates the HARPO source program into equivalent C language, Boogie1

Language, and, VHDL. Dotted arrows indicate the final outputs.

HARPO verifier is built top of Boogie which act as an

intermediary language to communicate with theorem provers.

We have successfully verified a few examples using technique

presented in this paper.

This paper is organized as follows: section II describes the

annotation for writing HARPO program specification. Section

III provides an overview of the translation. Section IV

provides an example of translation and finally section V

provides conclusion and some future work.

II. HARPO PROGRAM ANNOTATIONS FOR VERIFICATION

HARPO programs consist of components namely, interfaces,

classes, objects and constants [3,4]. We introduce ghost fields

in HARPO for verification. Ghost fields are ignored by other

backends such as C and VHDL [7,8].

Annotations for verification are a part of the syntax of

HARPO programs. These annotations are necessary for

writing the specifications of the HARPO programs. However,

use of annotations must be semantically correct for getting the

error report from the Boogie.

1 Boogie is an intermediate language used for verification named as Boogie
IVL, and the Boogie verifier is a tool which takes the programs written in

Boogie IVL to verify [5].

2

Classes and Interfaces: Classes are basic constructs of

HARPO as it is an object-oriented language. In HARPO each

class may have claim and invariant annotations. Claim

annotations on classes indicate which locations are owned by

objects of the classes on instantiation. Class invariants are

propositions that must be true when the object is not occupied

by any thread.

Perm Type: To express ownership of locations Perm, a

permission type, has been introduced in HARPO it is used for

verification only. These ghost permission type variables are

assigned fractional values between 0 and 1 representing the

degree of ownership on fields (locations). The higher the value,

the greater the ownership of the location [9]. Permissions on

locations are held by objects or threads. A tread must hold a

nonzero amount of permission on an object to read it and a

permission of 1.0 to write to it. Since the total permission on

each location is 1.0, data races are avoided.

Class Members: A methods specification clause consists of

a pre-condition, a post condition; a takes PermMap, a gives

PermMap, and a borrows PermMap. The conditions are

Boolean expressions that may contain ghost variables. A post-

condition expression contains variables with apostrophe e.g. if

x is the initial value then x’ is the final value.

Threads: Threads are executable blocks of code and each

block contains sequence of HARPO commands and local

declarations. For verification purpose, a thread may contains

claim specification. The claim indicates the amount of

permission held initially by the thread.

Assertions and assumptions: HARPO program may

contains assume conditions, and assert conditions where

condition is the Boolean expression. ‘assert’ and ‘assume’ are

useful to write the specification of the HARPO program. They

can easily let the verifier skip or put assertion on interested

parts of the code for verification.

Loops and Concurrent Blocks: Loops are much like loop

structures in other higher level programming languages. Loops

need invariant condition(s) specification, where condition is

Boolean expression. Parallel blocks are implemented with co

keyword. Initially co block has claim specification that takes

permission values of locations from the thread and split it into

the inner concurrent blocks. The sum of permissions split by

the co should not exceed the initial permission held by the

parent thread.

III. PROGRAM TRANSLATION INTO BOOGIE

A standard approach for program verification is to use the

theorem proving technique [5]. Source code with program

specifications in a higher programming language is converted

into verification conditions. However, generating the

verification conditions for theorem provers is a complex task.

A common approach to deal with this complexity is to use an

intermediate verification language. We have mitigated the

complexity by dividing the verification process into two main

steps: Translating the program specifications into an

intermediate verification language (IVL), Boogie. Later, the

Boogie source is converted into verification conditions and

checked by Boogie verifier to generate the error report. In our

case, Boogie verifier reports back the errors in the

specifications of an input Boogie program translated from

HARPO program.

HARPO is concurrent, Boogie is sequential and so there is a

need to represent the actions of other threads in the generated

Boogie code. We do this by havocing locations that may have

been changed by other threads at appropriate points in the

code for a thread. Finally, we can determine the correctness

of concurrent HARPO programs.

A. BOOGIE PRELUDE

The Boogie prelude is part of the Boogie program

independent of the source program being translated into

Boogie. This part contains some important properties such as

modeling memory, reference types, type axioms, array length

and permission type, required for translation of HARPO

program. The final output consists of Boogie prelude and the

translation of specific HARPO programs.

B. MEMORY MODEL

Memory model is an important decision while translating

HARPO programs into Boogie. We are using heap memory

model which maps the fields and object references to values.

For array types we declare a separate heap.

C. TRANSLATION OF PROGRAM COMPONENTS

All the reference types in HARPO are translated into the

Boogie types. . A few translations of HARPO program

components to Boogie, shown in Table 0. Following are some

HARPO program components and their translated definitions

in Boogie:

Class: HARPO classes translated into constants in Boogie.

In case of a class, implementing an interface it is expressed by

subtype in Boogie.

Interface: Interfaces are translated into constants in Boogie.

Fields: Fields are translated into unique constant in Boogie.

Field name is appended to the class name after ‘.’ character.

Constants: Constants of HARPO translated into constants in

Boogie with an axiom referring the well-definedness of

expression and equality between value and constant.

Types: HARPO has four different categories of types

including, primitive types, reference object types, permission

type, and array types. Types are converted in Boogie such as,

primitive types converted into Boogie primitive types;

reference types into Ref types; permission types to Perm type;

and array types to ArrayRef type in Boogie.

Expressions: Expressions form with arithmetic and logical

operators. All expressions checked with their well-defindness

before translating them to equivalent Boogie expressions.

Assertions are generated to check that expressions are well

defined, for example, that array indices are in bounds.

3

TABLE 0

HARPO PROGRAM COMPONENTS AND THEIR EQUIVALENT BOOGIE CODE

Statements: Statements include assignments, if, while, co,

for and a few more [3]. Prior to the translation of HARPO

class, a prefix this added to all fields and methods of the class.

Local variables of the class are always promoted to the fields

in Boogie.

Thread: Thread is a block of code inside a HARPO class

annotated with claim specification. Multiple threads exploit

the concurrency among the objects using Rendezvous. For

instance, threads are translated into procedure of Boogie

containing this parameter denoting the object containing the

thread.

Methods: Methods have declaration containing the

contracts (permission specifications and assertions) and its

implementation inside the thread. Implementation of method

consists of sequence of HARPO statements. Permission

specifications are translated into the permission maps in

Boogie by implementing 2D array Heap. Whereas, assertions,

pre condition and post condition, are converted into requires

condition and ensures condition clauses respectively, in

Boogie. A condition is always boolean expression regardless

of it’s use in HARPO or Boogie.

IV. HARPO MATH CLASS TRANSLATION

Given a HARPO program in Listing 0 consists of a class

having an object declaration ‘c’ and a thread *t0*. *t0* is

assigning an expression to ‘c’ and making an assertion on the

value of ‘c’ with an integer ‘4’.

(class Math

 obj c:int32 :=0;

 (thread (*t0*)

 c:=2+2;

assert c=4;

 thread)

class)

Listing 0: HARPO program consists of ‘Math’ class containing object c and thread *t0*

//prelude

1. type Ref;

2. type Field a;

3. type HeapType = <a> [Ref,Field a]a;

4. var Heap:HeapType;

5. type Perm = real ;

6. type PermissionType = <a>[Ref, Field a]Perm;

// Specific translated part of Listing 0

7. type className;

8. function dtype(Ref) returns (className);

9. const unique Math:className;

10. const unique Math.c : Field int;
11. procedure Math.t0(this:Ref)
12. modifies Heap;
13. { var Permission : PermissionType where

(forall <a> r:Ref, f : Field a ::

Permission[r,f] == 0.0) ;

14. var oldHeap, tmpHeap : HeapType ;
15. assert Permission[this, Math.c] == 1.0 ;
16. Heap[this,Math.c]:= 2+2;
17. assert Permission[this, Math.c] > 0.0 ;
18. assert Heap[this,Math.c]==4 ;}

Listing 1: Boogie code translation of Listing 0

We have implemented an automation of translation from

Listing 0 to Listing 1. The process of automation is explained

in Section V. The following semantic errors occur in listing 0.

⎯ The assignment “c :=2+2;” has an error because the

thread does not have permission of 1.0 on the location.

⎯ Second the assertion “assert c=4 ;” has an error.

because the thread does not have permission > 0 on the

location ‘c’.

Boogie will report the errors in Listing 1 because assertions

in lines 15 and 17 will not hold. To remove errors from the

program we need to add ‘claim c’ specification in ‘*t0*’,

show in Listing 2. The result of translating Listing 2 is shown

in listing 3. The Boogie verifier finds no errors in this code.

V. AUTOMATING THE TRANSLATION

The compiler’s parser generates an Abstract Syntax Tree

(AST) for the given HARPO program. Figure 1 has

(class Math

 obj c:int32 :=0;

 (thread (*t0*) claim c

 c:=2+2;

 assert c=4;

thread)

class)

Listing 2: HARPO program consists of ‘Math’ class containing object c and thread *t0*

11. procedure Math.t0(this: Ref)
12. modifies Heap;
 .

 .

 .

15. Permission[this, Math.c] := 1.0;
16. assert Permission[this, Math.c] == 1.0 ;
17. Heap[this,Math.c]:= 2+2;
18. assert Permission[this, Math.c] > 0.0 ;
19. assert Heap[this,Math.c]==4 ;}

Listing 3: Procedure ‘Math.t0’ will get permission on c after adding ‘claim c’. ‘Msth.c’ is assigned with

permission values 1.0 in line 15.

Program

components
HARPO Code Boogie Code

Class
(class A

class members class)

const unique A:

ClassName;

Interface

(interface B

Interface members
interface)

const unique B:

ClassName;

Field obj h: Int8: = Exp
const unique A.h: Field

int;

Constants
const c: real16: =

Exph

const c: real;

axiom x == Expb

While
Statement

(while Gh invariant I
statement(s) while)

while (Gb) invariant I
Boogie statements

Thread

(thread T claim

init_Permission block

thread)

Procedure A.T(this: Ref)

Modifies H. ArrayH;
Requires dtype(this) <:

C;

{…thread block
…claim translation}

4

Figure 1: Abstract Syntax Tree (AST) generated by HARPO Compiler’s parser from Listing 2

representation of AST of Listing 2 which is generated by

the HARPO parser.

The Front-End of the verifier consists of generating AST,

and, attributing the AST in checking phase. HARPO Parser is

responsible for passing the legitimate syntax whereas, checker

is responsible to check the names with their declarations,

generating the symbol table, linking names to their

declarations, and, detect the duplicate declarations. After

resolution, symbol table is no more required, and we have a

declaration list.

Back end of the verifier consists traversing the attributed

AST stored as declaration list. An attributed AST, a

declaration list, is show in Listing 4 is generated by HARPO

verifier from Listing 2. This Declaration list is hunt down by

Boogie backend for all declarations present in the list.

Declarations may contain command and nodes. Each

declaration and subsequent command or node are translated to

its Boogie equivalent according to the information shown in

Table 0.

[ClassDeclNd(

 ObjDeclNd[c](

NamedTypeNd(Int32) : loc{Int32},

ValueInitExpNd(IntLiteralExpNd(0):Int32):Int32),

 ThreadDeclNd[t#0](

ThrdClaimNd([NameExpNd(c) : Int32),

 SeqCommandNd(

 AssertCmdNd(

 ChainExpNd(

 [LessOp],

 [FetchExpNd(NameExpNd(c) : loc{Int32})

: Int32, IntLiteralExpNd(20) : Int32]) : Bool)

))))),]

Listing 4: Abstract Syntax Tree (AST) declaration list generated by HARPO checker from Listing 2.

A string buffer containing Boogie prelude is appended

with translated Boogie for each declaration in source program.

String buffer moves around the subroutines, translating the

declarations. When automated translation process is

completed, string buffer contains Boogie code which is ready

to verify with Boogie verifier.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the process of

conversion of a program from HARPO to Boogie program.

HARPO program specifications are written with the help of

annotation. We automated the process of translation for

‘assert’ and ‘assume’ commands in HARPO, and it is checked

with Boogie Verifier which is working according to our

verification theory. Some commands like if and while have

also been translated. Later, our implementation will result an

independent backend of verifier, that would be able to

translate complete HARPO programs which are exhibiting the

concurrency among the threads. Some Language features, like

functions and predicates, are needed to be added for writing

full functional specifications. Finally, we are going to develop

a verification tool like Dafny [11].

ACKNOWLEDGMENT

We thank Fatemeh Ghalehjoogh for developing verification

theory for HARPO [7]. It would not be possible without her

work to implement the verifier.

REFERENCES

[1] E. Dijkstra, "The humble programmer", Communications of the ACM,

vol. 15, no. 10, pp. 859-866, 1972.
[2] T.S. Norvell, A.T. Md.Ashraful, L.Xiangwen, & Z. Dianyong,

“HARPO/L: “A language for hardware/software codesign.” in
Newfoundland Electrical and Computer Engineering Conference
(NECEC), 2008.

[3] T.S. Norvell, Language design for CGRA project. design 8.
[unpublished draft], 2013.

[4] T. S. Norvell, “A grainless semantics for the HARPO/L language,” in
Canadian Electrical and Computer Engineering Conference, 2009.

[5] K.R.M. Leino, “This is Boogie 2,” Microsoft Research, Tech. Rep.,
2008, draft. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=147643

[6] O. Hasan, & S. Tahar. (2015). “Formal Verification Methods”. In M.
Khosrow-Pour (Ed.), Encyclopedia of Information Science and
Technology, Third Edition (pp. 7162-7170). Hershey, PA: IGI Global.
doi:10.4018/978-1-4666-5888-2.ch705

[7] Y.G. Fatemeh, “Verification of the HARPO language,” Master’s thesis,
Memorial University, 2014.

[8] T. S. Norvell, Annotations for Verification of HARPOL. Draft Version
0. [unpublished draft], 2014.

[9] T. S. Norvell, “HARPO/L: “Concurrent Software Verification with
Explicit Transfer of Permission” in Newfoundland Electrical and
Computer Engineering Conference (NECEC), 2017.

[10] K.R.M. Leino, P. Müller, and J. Smans, “Verification of concurrent
programs with Chalice,” in Foundations of Security Analysis and
Design V, ser. LNCS, vol. 5705, 2009.

[11] K.R.M. Leino & V. Wüstholz, (2014). The Dafny integrated
development environment. arXiv preprint arXiv:1404.6602.

